2021年4月26日 星期一

日本大叔從零開始學Python,開發出了連雀巢都採用的人工智慧!(上)

 從零開始學Python開發人工智慧,50歲的他做到了!年齡絕對不是問題,你也可以!

從零開始學Python開發人工智慧,50歲的他做到了!年齡絕對不是問題,你也可以!

 

年過 50 歲的日本副社長自學 Python!寫出的 AI 還被雀巢採用

 

你也有轉職夢,想學 Python、當Python工程師或是設計人工智慧  AI 軟體,可是怕自己的背景、年齡、學經歷而不敢往前?

那這位已經日本的 50 歲「文科」副社長坂元英樹,從完全的外行人到運用Python研發出改變產業的 人工智慧 AI 應用的故事,肯定能激勵你!

 

一間市場研究x包裝設計公司,為什麼要自己研發 AI?

 

故事要從坂元英樹所任職的公司「Plug」(株式会社プラグ)說起。

Plug 是由一間從事市場研究的公司、與一間從事包裝設計的公司於2014年合併而來,當時只是員工數約 30 人的小公司,至今已有約 70 名員工。Plug 主要提供的服務為:透過市場調查來了解消費者對商品包裝的喜愛度、偏好度與購買相關度等資訊。

▲ Plug 是一間提供市場行銷調查和包裝設計開發業務的日本公司。

 

過去傳統做法是:當廠商需要決定最終要選擇 A 設計或 B 設計,Plug 便會調查數百個消費者的意見和想法,統計出哪個設計方案會讓消費者更有購買慾。

換句話說,大多數產品包裝都是由客觀的數據資料決定的。這表示 Plug 要做的是把「包裝美觀好看」這種主觀因素,轉化成「因為它在市場上會更受歡迎」這種可以明確量化的客觀因素。

市場調查重要的地方在於把市場接受度量化成具體數字。圖為日經雜誌(日経クロストレンド)委託 Plug 調查各品牌即食沖泡湯包的包裝設計、在市場上的喜愛排行。圖片來源:Plug 官方網站。

 

但在各種新興技術蓬勃發展的現代,有什麼更快、更好、更準確的方法,可以數字化出「包裝設計」有多少市場接受度呢?這個問題成為 Plug 急需解決的商業挑戰。

AI 正可以完美的解決這個問題,也是成為 Plug 副社長坂元英樹開始學習 Python 踏上 AI 之路的契機。

 

從完全不會到寫出程式 副社長一年花 1000 小時學習 AI

 

看到這裡,有人肯定會提出疑問:「就算公司需要 AI 技術,那為何不找外包公司就好了呢?身為管理職的副社長有需要自己跳下去學嗎?」

這個問題,坂元英樹接受日本自媒體「ITmedia NEWS」採訪時是這麼回答的:「委外的化一方面耗費成本,而且 know-how 會外流。」並表示:「實際上,我們在開發之初就試圖將其外包,但是坂元和同事因為遇到種種問題,最終轉向了內部生產。」

但是如果要由公司自己開發,研發人員又要從哪來呢?

綜合考量之後,坂元決定從最常被用於開發 AI 的程式語言──Python 開始學習。他笑稱:「這是我這輩子第一次接觸程式語言,當時的我甚至都不知道 for 語法是什麼。」

坂元踏出的第一步,就是報名了一間程式語言學校,並且設定好在家學習的目標:一年學習 1000 個小時。「如果我在工作日學習 2 個小時、週末學習 5 個小時,那麼一週就學習了 20 個小時,持續這樣做一年,我就能夠學習 1000 個小時了。」坂元英樹這樣表示。

▲ Plug 副社長坂元英樹。圖片來源:Plug官方網站。

 

他花兩個月時間掌握了 Python 的基本知識後,又報名了另一間專門教機器學習的學校。 坂元:「我過去從事過市場行銷調查員,對統計學有基本的知識,所以比較容易理解機器學習的概念,只是我一開始不知道如何用 code 來表達它。」

到此,這個還沒有雛型的「計畫」都還是在工作之餘進行的,雖然研發 AI 技術對公司來說舉足輕重,但還不確定能否將其轉變為正式的專案。

「當時的我下班後還是每週花 20 個小時在寫 AI 上,我的家人們因此說:『你滿腦子都是 AI!』」坂元笑稱:「也讓我覺得,或許比起管理職,當個 AI 工程師或許更是我的天職。」

時間來到坂元投入開發的五個月後,事情終於有了進展。他們開發了一個概念驗證(PoC)模型,原本該模型顯示設計的實際評價和人工智慧評價的相關性很低,只有 0.3 的低關聯度;但經過進一步的討論、研究後,終於把相關性提高到 0.5。

「這時我們確信,這個計畫可以成為公司內部的正式專案。」

 

本文為該系列的上篇,下篇請點此連結

 

相關文章:

AI 產業革命開始!為何 Python 成人工智慧必備語言?

研究所開始鋪路未來扎實的Python課程讓我錄取竹科工程師

進可攻·退可守的一技之長-Python課程結業後成功轉職工程師 ...

被日文系耽誤的工程師魂? Python課程結業後的他,竟錄取全球百大企業!

Python程式碼可視化?工程師debug的好幫手!

2020年度精選十大Python函式庫(4)

入選2020年度Top10的那些Python函式 (3)